MapReduce внутри, снаружи или сбоку от параллельных СУБД



         

Использование MapReduce для подготовки данных параллельных СУБД


Я не могу считать себя специалистом в области различных средств ETL (Extract-Transform-Load), которых существует множество, и которые применяются во многих компаниях, использующих хранилища данных (я не буду даже пытаться как-то их классифицировать и/или сравнивать). Но, в любом случае, важность этих средств трудно переоценить, поскольку в хранилище данных по определению поступают данные из самых разнообразных источников: транзакционных баз данных, сообщений, участвующих в организации бизнес-процессов, электронной почты, журналов Web-серверов и т.д. Все эти данные нужно очистить, привести к единому формату, согласовать и загрузить в хранилище данных для последующего анализа.

Наверное, можно согласиться с идеологами MAD-аналитики из Greenplum (см. п. 3.1.1), что при использовании ортодоксального подхода к организации хранилищ данных подключение нового источника к хранилищу данных может занять недопустимо много времени во многом как раз из-за потребности в создании соответствующей процедуры ETL. Наверное, можно согласиться и с тем, что для аналитиков гораздо важнее получить новые данные, чем быть вынужденными ждать неопределенное время их в согласованной форме. Но совершенно очевидно, что если данные в хранилище данных не очищать никогда, то со временем в них не разберется никакой, даже самый передовой аналитик.

Итак, что мы имеем. Число источников данных, пригодных для анализа в составе хранилища данных, все время растет. Их разнородность тоже все время возрастает. Все меньший процент составляют структурированные базы данных, данные поступают из частично структурированных файлов и совсем неструктурированных текстовых документов. Для каждой разновидности источников данных нужна своя разновидность процедуры ETL, и по причине роста объемов исходных данных для обеспечения умеренного времени их загрузки в хранилище данных эти процедуры должны выполняться в массивно-параллельной среде. И в этом может помочь технология MapReduce.




Содержание  Назад  Вперед