HadoopDB архитектурный гибрид технологий



         

Заключение


Наши эксперименты показывают, что HadoopDB может приблизиться в отношении производительности к параллельным системам баз данных, обеспечивая при этом отказоустойчивость и возможность использования в неоднородной среде при тех же правилах лицензирования, что и Hadoop. Хотя производительность HadoopDB, вообще говоря, ниже производительности параллельных систем баз данных, во многом это объясняется тем, что в PostgreSQL таблицы хранятся не по столбцам, и тем, что в PostgreSQL не использовалось сжатие данных. Кроме того, Hadoop и Hive – это сравнительно молодые проекты с открытыми кодами. Мы ожидаем, что их следующие версии будут демонстрирорвать более высокую производительность. От этого автоматически выиграет и HadoopDB.

В HadoopDB применяется некоторый гибрид подходов параллельных СУБД и Hadoop к анализу данных, позволяющий достичь производительности и эффективности параллельных систем баз данных, обеспечивая при этом масштабируемсть, отказоустойчивость и гибкость систем, основанных на MapReduce. Способность HadoopDB к прямому включению Hadoop и программного обеспечения СУБД с открытыми исходными текстами (без изменения кода) делает HadoopDB особенно пригодной для выполнения крупномасштабного анализа данных в будущих рабочих нагрузках.




Содержание  Назад  Вперед